RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2016 FIRST YEAR [BATCH 2016-19] PHYSICS [General]

Date : 17/12/2016 Time : 11 am - 1 pm

Paper: I

Full Marks: 50

[Use a separate Answer Book for each Group]

Group - A

		(Answer any four questions)	[4×5]
1.	Show that the Young's modulus Y, modulus of rigidity η and Poisson's ratio σ , are related by the equation $Y=2\eta(1+\sigma)$.		
2.	Pro	eve that the torsional couple per unit twist of a wire of length L and radius r is $\frac{\pi \eta r^4}{2L}$, where η is	
the rigidity modulus of the material.			[5]
3.	a) b)	State the significance of Reynold's number. A cylindrical vessel of radius 7 cm is filled with water to a height of 50 cm. It has a capillary tube 10 cm long, 0.2 mm radius, protruding horizontally at its bottom. If the viscosity of water is	[2]
		0.01 C.G.S units. Find the time in which the level will fall to a height of 25 cm.	[3]
4.	a)	Prove the relation between surface tension and surface energy.	[3]
	b)	Calculate the amount of energy needed to break a drop of water 2mm in radius into 10^6 droplets of equal size. Given surface tension of water is 0.073 N/m.	[2]
5.	a)	The surface tension of mercury is about 0.55 N/m and of water is 0.075 N/m. Is it possible for drops of water to stand upon mercury. Explain you answer.	[2]
	b)	Find the expression for excess pressure in a curved film.	[3]
6.		tain an expression for the rise of liquid in a capillary tube in terms of surface tension and angle of atact.	[5]
		Group - B	
		(Answer any three questions)	[3×5]
7.	Est	ablish Fermat's principle from the law of reflection at a plane surface.	[5]
8.	a)	Derive the thin lens formula using Fermat's principle.	[3]
	b)	If the refractive index from air to glass is 3/2 and that from air to water is 4/3, find the ratio of the focal lengths of a glass lens in water and in air.	[2]
9.	a)	••	[2+1]
	b)	Determine the condition in which a plane convex lens can minimize the spherical aberrations by calculating the refractive index of the medium of the lens.	[2]
10	a)	What is chromatic aberration of a lens?	[2]
	b)	Determine the condition of achromatism of two lensed in contact.	[3]
11.	a) b)	Define dispersive power of the material of a prism. Calculate the dispersive power of crown glass [Given, $\mu_r = 1.52$ and $\mu_v = 1.53$]	[2] [3]

<u> Group - C</u>

	(Answer any three questions)	[3×5]
12.	2. Obtain an expression of Simple harmonic damped vibration executed by a particle. What is critic damping?	
13.	3. A particle is subjected to two simple harmonic motion at right angle to each other, having equation $x = a \sin \omega t$ and $y = b \sin(\omega t + 0.1)t$. Find the resultant locus of the particle. Also find the time periods which pattern will rotate.	
14.	Deduce one dimensional differential equation for plane progressive wave.	[5]
15.	 a) Obtain an expression for equation of motion of transverse vibration of a string. b) A string is stretched by suspending a load of 2 kg. The mass per unit length of the string is 	[4]
16.	1gm/m. Find the velocity of the transverse wave. Two coherent sources form interference fringes. Find the distance between two consecutive bright	[1]

____×___

[5]

fringes.